Syllabus Id	syl090042		
Subject Id	sub-090104700		
更新履歴	09326新規 09630改定		
授業科目名	振動工学 Mechanical Vibration		
担当教員名	村松久巳		
対象クラス	機械工学科5年生		
単位数	1学修単位		
必修/選択	必修		
開講時期	前期		
授業区分			
授業形態	講義		
実施場所	機械工学科棟3F M5HR		

授業の概要(本教科の工学的、社会的あるいは産業的意味)

機械や構造物から生じる機械的な振動、流体関連振動、騒音などエンジニアが取り組む諸問題は多く存在する。安全性の確保 や公害の防止のために振動工学の理論と現象を正しく理解することにより、適切な対策の方法が得られる。

本講義の振動工学は機械振動に関する基礎事項を学習する。その内容は大別すると、1自由度系と2自由度系の自由振動と強制振動であり、これらの振動現象を基本的な要素である質量・ばね・減衰器によりモデル化し、運動方程式を導く。この運動方程式を解くことにより、振動特性を理解する。

準備学習(この授業を受講するときに前提となる知識)

工業力学で学んだ基礎知識に加えて、代数、微分積分、微分方程式など数学の知識が必要です。 keywords: 調和振動、周期、フックの法則、並進運動、回転運動、慣性モーメント、運動方程式など

	Weight	目標	説明
学習・教育目標		Α	工学倫理の自覚と多面的考察力の養成
		В	社会要請に応えられる工学基礎学力の養成
	0	С	工学専門知識の創造的活用能力の養成
		D	国際的な受信・発信能力の養成
		Е	産業現場における実務への対応能力と、自覚的に自己研鑚を継続できる能力の
			養成
	工学的な	解析•分科	折力、及びそれらを創造的に統合する能力を身につける。

学習・教育目標の達成度検査

- 1. 該当する学習・教育目標についての達成度検査を、年度末の目標達成度試験を持って行う。
- 2. プログラム教科目の修得と、目標達成度試験の合格を持って当該する学習·教育目標の達成とする。
- 3.目標達成度試験の実施要領は別に定める。

授業目標

- 本授業では、(1)1自由度系と2自由度系の振動では、ニュートンの運動の法則により運動方程式を立てられること、
 - (2)運動方程式を解き、得られた解から振動の状態を理解し説明できること、
 - (3)エネルギーの観点から運動を考えることができ、特に多自由度系の振動では、 ラグランジュの方程式により、運動方程式が立てられること

を目標にする。

授業計画(プログラム授業は原則としてプログラム教員が自由に参観できますが、参観欄に×印がある回は参観できません。)

回	メインテーマ	サブテーマ	参観
第1回	前期オリエンテー	プログラムの学習・教育目標、授業概要・目標、スケジュール、評価方法と	×
	ション	基準の説明、振動とその性質 (教科書p1から)	
第2回	1自由度系の自由振動	減衰のない場合の自由振動、ばね定数 (教科書p15から)	
第3回		振子の自由振動、エネルギー法 (教科書p22から)	
第4回		減衰力、粘性減衰のある場合の自由振動 (教科書p32から)	
第5回		粘性減衰のある場合の自由振動 (教科書p35から)	
第6回		粘性減衰のある場合の自由振動	
第7回	1自由度系の強制振動	減衰のない場合の強制振動 (教科書p47から)	
第8回	前期中間試験		×
第9回	1自由度系の強制振動	減衰のない場合の強制振動	
第10回	1自由度系の強制振動	粘性減衰のある場合の強制振動 (教科書p51から)	
第11回	1自由度系の強制振動	粘性減衰のある場合の強制振動、振動のエネルギー (教科書p55から)	
第12回	2自由度系の振動	2自由度系の自由振動 (教科書p101から)	
第13回	2自由度系の振動	2自由度系の自由振動 (練習問題)	
第14回	多自由度系の振動	2自由度系の強制振動 (教科書p111から)	
第15回	多自由度系の振動	ラグランジュの方程式 (教科書p121から)	
第16回	前期期末試験	試験終了後、答案を返却し、問題の解説を行う。	×

課題

出典:教科書の章末問題など 提出期限:出題した次の週 提出場所:授業終了時の教室

オフィスアワー:授業がある曜日の放課後、機械工学科1F空気圧工学実験室

評価方法と基準

評価方法:

- (1)1自由度系と2自由度系の振動では、ニュートンの運動の法則により運動方程式を立てられること
- (2)運動方程式を解き、得られた解から振動の状態を理解できること
- (3)エネルギー法により問題を解くこと
- (4)多自由度系の振動では、ラグランジュの方程式により運動方程式が立てられること
- 以上が身についたかを、筆答試験の解答、レポート(練習問題など)の内容と完成度から次の評価基準で評価する。

評価基準:

筆答試験70%, 課題レポート30%, 60点以上を合格とする

教科書等	工業基礎振動学、養賢堂、斎藤秀雄。適宜にプリントを配布する。
先修科目	工業力学
JUKL	Webラーニングプラザ 機械ー機械力学基礎知識コース http://weblearningplaza.jst.go.jp/
	プリントを配布して、板書する量を調整する。
への対応	運動の状態を理解するために、上述の関連URL などを用いて振動の状態を動画で示す。
備考	1.試験や課題レポート等は、JABEE、大学評価・学位授与機構、文部科学省の教育実施検査に使用することがあります。 2.授業参観されるプログラム教員は当該授業が行われる少なくとも1週間前に教科目担当教員へ連絡してください。